

Tetrahedron Letters 41 (2000) 7757-7761

Intermolecular asymmetric Heck reactions with 2,2-diethyl-2,3-dihydrofuran

Alan J. Hennessy, David J. Connolly, Yvonne M. Malone and Patrick J. Guiry*

Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland Received 16 June 2000; accepted 1 August 2000

Abstract

Palladium-catalysed intermolecular asymmetric Heck reactions were performed on 2,2-diethyl-2,3-dihydrofuran using chiral diphosphine and phosphinamine ligands. The steric effect of increased bulk at the 2-position was examined for phenylations and cyclohexenylations and lower chemical yields, but similar enantioselectivities were obtained compared to the 2,2-dimethyl analogue. The optimum ee for phenylation was 94% and for cyclohexenylation was 93%, both obtained with the *t*-Bu-substituted diphenylphosphinoaryloxazoline ligand. © 2000 Elsevier Science Ltd. All rights reserved.

The asymmetric intermolecular Heck reaction, a useful palladium(0)-catalysed carbon–carbon bond forming transformation, was first reported by Hayashi in 1991.¹ Their study, as with subsequent investigations by a range of other workers, used 2,3-dihydrofuran 1 as the test substrate to determine and compare the reactivities and enantioselectivities of a range of chiral ligands.²⁻⁴ The possibility of double bond isomerisation for this substrate means that in some cases different ligands lead to predominantly different products and therefore a direct comparison of their selectivity is not possible. We recently reported 2,2-dimethyl-2,3-dihydrofuran 2 as a useful test substrate for the intermolecular asymmetric Heck reaction as it allows for easy and direct comparison of a wide range of ligands as only one regioisomeric product can be formed.⁵ Our initial application of this substrate was in the asymmetric phenylation and cyclohexenylation of dihydrofuran 2, which proceeded in high yields and enantioselectivities of up to 98% of product 3 and 97% of product 4. Scheme 1.^{5,6}

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01325-3

The optimum ee values in our phenylation study with 2 were mostly unchanged when compared to the phenylation of 1 by Hayashi.¹ This was not the case when the cyclohexenylations of 2 were compared with those of 1,⁷ as we observed a significant decrease for palladium complexes of (*R*)-BINAP 5 and for the oxazoline-containing P–N ligands 6-9.⁶

Therefore, in order to investigate the influence of the increased bulk at the 2-position on the ee values obtained, we synthesised 2,2-diethyl-2,3-dihydrofuran 10, by a modification of literature procedures.⁸ In this communication we wish to present our preliminary results on the test reaction of 10 with phenyl trifluoromethanesulfonate and cyclohex-1-en-1-yl trifluoromethanesulfonate, respectively, catalysed by palladium complexes of ligands 5–9.

The phenylation and cyclohexenylation of **10**, Scheme 2, were carried out using identical reaction conditions to those reported for substrate **2** for comparative purposes and the results obtained are given in Table 1 (note: racemic 2,2-diethyl-5-phenyl-2,5-dihydrofuran **11** and 5-cyclohex-1'-en-1'-yl-2,2-diethyl-2,5-dihydrofuran **12**, required for GC analysis, were prepared using Larock's procedures from dihydrofuran **10** and iodobenzene and 1-iodocyclohexene, respectively).^{9,10}

The yields obtained with palladium complexes of (*R*)-BINAP **5** were low and the enantioselectivities were moderate (54–64%). This compares unfavourably with the yields of 52–100% and ee values of 70–76% obtained in the phenylation of dihydrofuran **2**. The yield using the *i*-Pr-substituted diphenylphosphinoaryloxazoline ligand **6** was low (16%) and only a moderate ee was achieved in contrast to when **2** was used as substrate (44 versus 81%). The yield increased when the *t*-Bu-substituted analogue **7** was tested, as was noted with **2**, and a moderate ee (50%) was achieved with N(*i*-Pr)₂Et as base (entry 4). When 1,8-bis(dimethylamino)naphthalene (proton sponge) was used a 74% yield and an optimised ee of 94% was obtained. When the *i*-Pr- or *t*-Bu-substituted diphenylphosphinoferrocenyloxazoline ligands **8** or **9** were tested, low yields (7–17%) were observed and the ee values were also poor (25–43%). This represents a significant lowering of ee compared to that obtained (92–98%) with the less bulky substrate **2**.⁵ Therefore, the optimal ee for the phenylation of dihydrofuran **10** was 94%, although in this case it was with the *t*-Bu-substituted diphenylphosphinoaryloxazoline ligand **7**.

Entry	Ligand	Base	$T/^{\mathbf{o}}\mathrm{C}$	% Yield ^a	Product (% ee) ^{b,c}
1	5 ^d	Proton sponge	40	23	11 (64)
2	5 ^d	$N(i-Pr)_2 Et$	40	47	11 (54)
3	6 ^e	Proton sponge	80	16	11 (44)
4	7 ^e	$N(i-Pr)_2Et$	80	33	11 (50)
5	7 ^e	Proton sponge	80	74	11 (94)
6	8 ^e	Proton sponge	80	7	11 (25)
7	9 ^e	Proton sponge	80	17	11 (43)
8	5 ^d	Proton sponge	40	32	12 (14)
9	5 ^d	$N(i-Pr)_2 Et$	40	34	12 (39)
10	6 ^e	Proton sponge	40	11	12 (87)
11	7 ^e	Proton sponge	40	24	12 (93)
12	7 ^e	N(<i>i</i> -Pr) ₂ Et	40	34	12 (82)
13	8 ^e	Proton sponge	40	5	12 (37)
14	9 ^e	Proton sponge	40	16	12 (25)

 Table 1

 Asymmetric phenylation and cyclohexenylation of 10

^a Yields were calculated by GC (SE-30, 30 m, 11 psi He), 50°C for 4 min, 15°C min⁻¹ up to 170°C, $t_R = 13.7$ min for product 11, $t_R = 13.5$ min for product 12 and $t_R = 14.1$ min for tridecane.

^b Enantiomeric excesses were determined by GC on a ChiraldexTM γ -cyclodextrin TFA capillary column (30 m×0.25 m, 15 psi He); 80°C, 0.3°C min⁻¹ up to 92°C, 5°C min⁻¹ up to 130°C, ($t_R = 52.0$ (R) and 52.4 (S min) for **11**; 65°C, 0.3°C min⁻¹ up to 95°C, 5°C min⁻¹, 95°C, 0.3°C min⁻¹ up to 105°C, 1°C min⁻¹, 5°C min⁻¹ up to 130°C ($t_R = 79.3$ (R) and 79.9 (S) min) for **12**.

^c The absolute configuration was determined to be (R) by comparison of the chiral GC retention times and optical rotations of **11** and **12** with optically pure samples of (R)-2-phenyl-2,5-dihydrofuran and (R)-2-cyclohex-1'-en-1'-yl-2,5-dihydrofuran, respectively.

^d Pd^0 complexes formed in situ from $Pd(OAc)_2$ and **6**.

^e Pd⁰ complexes formed in situ from Pd₂(dba)₃ and phosphinamines 7–10.

When palladium complexes of (*R*)-BINAP 5 were tested in the cyclohexenylation of 10, the ee values (14–39%) and the yields (32–34%) were low, but similar to those obtained with dihydrofuran 2. The *i*-Pr-substituted diphenylphosphinoaryloxazoline ligand 6 also gave a low yield (11%), but with a good ee of 87%, again a similar result to that obtained with dihydrofuran 2 (23% yield, 83% ee).⁶ With the *t*-Bu-substituted analogue 7, somewhat higher yields were obtained (24–34%), although these were lower than with 2 (26–68%).⁶

Good ee values of 82–93% were obtained with this ligand and proton sponge as base afforded our optimal result in this series (93%, entry 11), whilst the use of $N(i-Pr)_2Et$ gave a slightly lowered ee of 82% (entry 12). The yield obtained when the *i*-Pr-substituted diphenylphosphinoferrocenyloxazoline ligand **8** was used was extremely poor (5%) and the ee decreased from when the less bulky dihydrofuran **2** was used (37 versus 76%). The yield for the *t*-Bu-substituted analogue **9** was only slightly higher (16%) and the ee was even lower (25%), which represents a large decrease when the same catalyst system was used for the cyclohexenylation of **2** (88% yield, 73% ee).

To conclude, we have seen that the increased bulk at the 2-position of 2,2-disubstituted-2,3dihydrofurans does affect both the yields and ee values of the asymmetric Heck reactions conducted upon them. In general, a decline in chemical yield was noted for reactions using the diethyl substituted substrate 10 compared with those using the dimethyl-substituted substrate 2. This may be due to increased ligand-reactant steric interactions in the migratory insertion transition state caused by the bulkier alkene (10 versus 2). Overall, the ee values decreased slightly when complexes of ligand 5 were employed, remained reasonably constant for complexes of ligands 6 and 7, but surprisingly fell dramatically for complexes of the diphenylphosphinofer-rocenyloxazolines 8 and 9. The reason for the oxazoline-containing ligands 6-7 and 8-9 to behave so differently must lie in their subtle steric and electronic differences. This work again highlights the difficulty in finding a ligand suitable for a wide spectrum of substrates and the need for a tailoring of ligands to each substrate used. Further studies on related substrates are in progress and will be reported in due course.¹¹

Acknowledgements

This Asymmetric Heck project and A.J.H. have been supported by an Enterprise Ireland Basic Research Award (SC/96/435) and a President's Research Award (RP100) to P.J.G. Y.M.M. and D.J.C. received financial support from Enterprise Ireland Research Scholarships BR/94/024 and BR/99/238, respectively. The award of the BOC Gases Postgraduate Bursary to Y.M.M. and A.J.H. in 1997 and 1998, respectively, is gratefully acknowledged. We thank Merck Sharpe & Dohme (Ireland Ltd) for their support of and interest in our Heck research, Schering Corporation (USA) for their support of D.J.C. and Johnson Matthey for a loan of Pd salts.

References

- 1. Ozawa, F.; Kubo, A.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 1417.
- For recent reviews: (a) Shibasaki, M.; Vogl, E. M. J. Organomet. Chem. 1999, 576, 1; (b) Guiry, P. J.; Hennessy, A. J.; Cahill, J. P. Top. Catal. 1997, 4, 311; (c) Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53, 7371.
- Diphosphine ligands: (a) Trabesinger, G.; Albinati, A.; Feiken, N.; Kunz, R. W.; Pregosin, P. S.; Tschoerner, M. J. Am. Chem. Soc. 1997, 119, 6315. (b) Tietze, L.; Thede, K.; Sannicolo, F. Chem. Commun. 1999, 1811; (c) Albinati, A.; Pregosin, P. S.; Tschoerner, M. Organometallics 1999, 18, 670.
- Heterobidentate ligands: (a) Loiseleur, O.; Meier, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1996, 35, 200; (b) Cho, S. Y.; Shibasaki, M. Tetrahedron Lett. 1998, 39, 1773; (c) Loiseleur, O.; Hayashi, M.; Schmees, N.; Pfaltz, A. Synthesis 1997, 11, 1338; (d) Loiseleur, O.; Hayashi, M.; Keenan, M.; Schmees, N.; Pfaltz, A. J. Organomet. Chem. 1999, 576, 16; (e) Baumann, M.; Togni, A., Poster No. 167, 11th International Symposium on Homogeneous Catalysis, St. Andrews, July, 1998; (f) Ogasawara, M.; Yoshida, K.; Hayashi, T. Heterocycles 2000, 52, 195.
- 5. Hennessy, A. J.; Malone, Y. M.; Guiry, P. J. Tetrahedron Lett. 1999, 40, 9163.
- 6. Hennessy, A. J.; Malone, Y. M.; Guiry, P. J. Tetrahedron Lett. 2000, 41, 2261.
- 7. Ozawa, F.; Kobatake, Y.; Hayashi, T. Tetrahedron Lett. 1993, 34, 2505.
- 8. Gianturco, M. A.; Friedel, P.; Flanagan, V. Tetrahedron Lett. 1965, 6, 1847.
- 9. Larock, R. C.; Gong, W. H.; Baker, B. E. Tetrahedron Lett. 1989, 30, 2603.
- Selected data for 11: ¹H NMR (270 MHz): δ (CDCl₃) 0.88–0.97 (6H, m, 2×CH₃), 1.59–1.81 (4H, m, 2×H₂C), 5.78–5.83 (2H, m, HC(3), HC(5)), 5.88 (1H, dd, J 5.91, 1.69, HC(4)) and 7.24–7.37 (5H, m, Ph); ¹³C NMR (67.5 MHz): δ (CDCl₃) 8.94 (CH₃), 9.56 (CH₃), 31.88 (H₂C-C(2)), 33.00 (H₂C-C(2)), 87.99 (HC(5)), 94.71 (C(2)), 128.11 (27×*m*-Ph), 128.89 (2×*o*-Ph), 130.15 (HC(3)) and 133.54 (HC(4)), 142.51 (*ipso*-Ph); v_{max} (CH₂Cl₂) 1640 (w) (C=C) cm⁻¹; *m*/z (eims 70 eV) 202 (M⁺, 1%), 201(8), 173(33), 115(18), 105(44), 57(47) and 29(100). Selected data for 12: ¹H NMR (270 MHz): δ (CDCl₃) 0.84–0.92 (6H, m, 2×CH₃), 1.47–1.72 (8H, m, 2×CH₂, H₂C(4'), H₂C(5')),

1.82–2.02 (4H, m, $H_2C(3')$, $H_2C(6')$), 5.09 (1H, m, HC(2')) and 5.67–5.74 (3H, m, HC(3), HC(4), HC(5)); ¹³C NMR (67.5 MHz): δ (CDCl₃) 8.39 (CH₃), 8.97 (CH₃), 22.61 (H₂C(4')), 22.69 (H2C(5')), 24.24 (H₂C(3')), 25.19 (H₂C(6')), 30.93 (H₂C-C(2)), 32.45 (H₂C-C(2)), 90.42 (HC(5)), 93.14 (C(2)), 124.59 (HC(2')), 128.92 (HC(3)), 133.19 (HC(4)) and 137.83 (C(1')); v_{max} (CH₂Cl₂) 1620 (w) (C=C) cm⁻¹; m/z (eims 70 eV) 206 (M⁺, 5%), 205(4), 178(17) and 177(100).

^{11.} Hennessy, A. J.; Kilroy, T.; Malone, Y. M.; Guiry, P. J., unpublished results.